The terms Digital Farming, Smart Farming and Agriculture 4.0 describe the use of digital information and communication technologies in agriculture. The digitalization of agriculture is also called the 'Third Green Revolution'.
The digitalization of agriculture aims at a more efficient use of resources for the protection of the environment and animals as well as at an increasing economic profitability.[1] Through a targeted use of digital technologies, farmers can be supported in their operational decisions. More information can be collected and also made available externally.
Digital Farming can be structured around three key areas:
Precision Farming and Smart Farming methods have been applied in practice extensively for more than two decades (status 2018)[3]. Precision Farming is considered the most significant innovation in U.S. agriculture, introduced in the mid-1980s[4]. However, its spread has sometimes been relatively slow due to the high initial costs[5].
The benefit of Precision Farming to reduce the risk of pesticide leaching to groundwater in sandy soils was first investigated in 1996 in American field trials[6]. A key innovation for the development of digital technologies, such as steering systems, was the invention of GPS, which was developed for military purposes in the late 1970s[7].
In the US, digital farming tools are already used by an estimated 20-80% of farmers[8]. In Europe, on the other hand, the use is estimated at 0-24%[9]. It is a rapidly growing sector, where new technologies are constantly being developed and mainly applied on large farms. Currently, there is a trend for large corporations to focus on big data, which includes the data collection of soil fertility, plant stress and climate[10].
The sustainability potential of the various technologies, which are summarized herewith under Digital Farming, differs greatly from one another. The following values should be understood as average figures. Single innovations may differ significantly from these.
Prerequisites for the digitization of agricultural processes are an able-bodied rural infrastructure, access to these modern technologies on farms and, in particular, tech-savvy employees on farms. Instead of the frequent patenting of modern technologies, open source solutions can be promoted to ensure the cost-effective access for small farms. In addition, this would promote a faster and more participatory further development of the technologies.
A number of risks and disadvantages are associated with the various digital farming techniques. According to scientists at the Thünen Institute, it is assumed that jobs will tend to be lost over the next ten to fifteen years as a result of the digitalization of agriculture, especially in the area of low-skilled jobs[15]. The application of Digital Farming is mainly economical viable for larger farms by creating high-tech jobs.[16] Michelsen of INKOTA-netzwerk e.V. points out that, among other things, vertical mergers of companies at different process stages driven by digitization can lead to a concentration of power[17]. Mooney, working in the field of international cooperation, also sees dangers for small-scale farming structures when technologies encounter unequal societies[18]. Small farmers in particular could be disadvantaged: "For example, almost half of all agricultural research by the private sector is concentrated on a single crop, maize. As a result, the interest of plant breeding companies in the 7,000 food crops grown by small farmers (in conditions where robots have not yet set foot) is negligible. This could urge governments to further discriminate against this plurality of species, and instead create sufficient markets for more 'commercial' plants"[19]. In addition, small farms are now increasingly threatened by large corporations’ takeovers, as the application of the new technology makes even small fields economically interesting for large corporations. At the same time, the competitiveness of small farms is decreasing, as they cannot keep up with the cost-intensive equipment[20]. In order for new technologies to benefit small farm structures as well, it should be ensured that their needs are taken into account in the development of the technologies, that they are given access to the technologies, for example in the form of open source, and that they possess their data themselves[21].
Defective technologies and algorithms can also have negative effects. If a wrong decision is made due to the technology, entire harvests can be destroyed[22]. Also the risk of confidential internal company data being passed on to third parties cannot be ruled out either.
[1] Bundesministerium für Ernährung und Landwirtschaft (2018): Digitalisierung in der Landwirtschaft. Chancen nutzen - Risiken minimieren. S. 21
[2] Mulla, D. und Khosla, R. (2017): Historical Evolution and Recent Advances in Precision Farming.
[3] Bundesministerium für Ernährung und Landwirtschaft (2018): Digitalisierung in der Landwirtschaft. Chancen nutzen - Risiken minimieren.
[4] Napier, T. L.; Robinson, J. und Tucker, M. (2000): Adoption of precision farming within three Midwest water-sheds.
[5] Mulla, D. und Khosla, R. (2017): Historical Evolution and Recent Advances in Precision Farming, p. 22.
[6] ibid, p. 20.
[7] Larsen, W. E. et al. (1988): Field navigation using the global positioning system (GPS).
[8] Kernecker, M. et al. (2018): D2.4 Peer-reviewed paper. Smart AKIS. Smart Farming Thematic Network. https://www.smart-akis.com/wp-content/uploads/2019/01/Peer-reviewed-paper.pdf
[9] ibid.
[10] Mulla, D. und Khosla, R. (2017): Historical Evolution and Recent Advances in Precision Farming. p. 24.
[11] Bomill (n.d.). https://bomill.com/ (20.02.2020)
[12] Gothia Redskap (2018). https://www.gothiaredskap.se/c (20.02.2020)
[13] SenseFly (2020): SenseFly—The Professional’s Mapping Drone of Choice. https://www.sensefly.com/ (20.02.2020)
[14] Hummingbird Technologies (2019). https://hummingbirdtech.com/ (20.02.2020)
[15] Bundesministerium für Ernährung und Landwirtschaft (2018): Digitalisierung in der Landwirtschaft. Chancen nutzen - Risiken minimieren. p. 21.
[16] ibid.
[17] ibid.
[18] Mooney, P. & ETC Group. (2018): Blocking the chain. Industrial food chain concentration, Big Data platforms and food sovereignty solutions. INKOTA, ETC Group, Glocon & Rosa-Luxemburg-Stiftung. https://webshop.inkota.de/node/1551
[19] ibid. p. 28.
[20] ibid. p. 31.
[21] Michelsen, L. (2018): INKOTA-Infoblatt Welternährung 17: Digitalisierung. INKOTA-netzwerk e.V. https://webshop.inkota.de/node/1555
[22] ibid. p. 29.